AI Consultant
alfatraining Bildungszentrum GmbH
100% kostenlos für Arbeitslose - finanziert durch das Arbeitsamt
Inhalt der Weiterbildung
Tauche ein in fortgeschrittene Python-Programmierung: Lerne den Umgang mit Modulen, Paketen, Strings und objektorientierten Grundlagen. Der Kurs behandelt auch Datenbanken, Webentwicklung mit Flask und führt in die Konzepte des Machine Learning und Deep Learning ein, einschließlich Evaluierung und neuronalen Netzwerken.
Python Advanced
Module, Pakete und Fehlerbehandlungen (ca. 4 Tage)
Einführung in Python-Module und Pakete
Importieren und Verwenden von Standard- und Drittanbieter-Paketen
Benutzerdefinierte Module und Pakete erstellen
Arbeiten mit sys und os (Host-Plattform-Funktionen)
Einführung in Ausnahmen und Fehlerbehandlung (try, except, finally)
Selbstdefinierte Ausnahmen erstellen und verwenden
Best Practices für robuste Fehlerbehandlung
Vorstellung von konkreten KI‐Technologien
sowie Anwendungsmöglichkeiten im beruflichen Umfeld
Einführung in die Arbeit mit Zeichenfolgen
Integrierte String-Methoden (split, join, find, replace usw.)
Formatieren und Verarbeiten von Zeichenketten
String-Slicing und Arbeiten mit regulären Ausdrücken (RegEx)
Einführung in Klassen, Objekte, Instanzmethoden und -variablen
Kapselung, Vererbung und Polymorphie
Konstruktoren (__init__) und Destruktoren (__del__)
Vererbungshierarchien und Superklassen
Vertiefung in Vererbung und Polymorphie
Anwendung von Magic Methods (__str__, __repr__, __eq__, __lt__, usw.)
Properties und Dekoratoren in Klassen
Design Patterns: Singleton, Factory, usw.
List Comprehensions zur effizienten Listenverarbeitung
Lambda-Funktionen und anonymes Funktionenschreiben
Closures und Scoping in Python
Generatoren und Iteratoren verstehen und verwenden
Lesen und Schreiben von Dateien (CSV, JSON)
Einführung in SQL und Verbindung zu SQLite-Datenbanken
CRUD-Operationen in einer Datenbank (Create, Read, Update, Delete)
Einführung in Flask und Erstellung einer einfachen Webanwendung
Routen und Vorlagen in Flask
CRUD-Anwendungen in Flask (Datenbankintegration)
Machine Learning
Einführung in Machine Learning (ca. 5 Tage)
Warum Machine Learning?
Anwendungsbeispiele
Überwachtes Lernen, Unüberwachtes Lernen, Teilüberwachtes Lernen, Reinforcement Lernen
Beispiele für Datenbestände
Daten kennenlernen
Trainings-, Validierungs- und Testdaten
Daten sichten
Vorhersagen treffen
Klassifikation und Regression
Verallgemeinerung, Overfitting und Underfitting
Größe des Datensatzes
Algorithmen zum überwachten Lernen
Lineare Modelle
Bayes-Klassifikatoren
Entscheidungsbäume
Random Forest
Gradient Boosting
k-nächste-Nachbarn
Support Vector Machines
Conditional Random Field
Neuronale Netze und Deep Learning
Wahrscheinlichkeiten
Arten unüberwachten Lernens
Vorverarbeiten und Skalieren
Datentransformationen
Trainings- und Testdaten skalieren
Dimensionsreduktion
Feature Engineering
Manifold Learning
Hauptkomponentenzerlegung (PCA)
Nicht-negative-Matrix-Faktorisierung (NMF)
Manifold Learning mit t-SNE
Clusteranalyse
k-Means-Clustering
Agglomeratives Clustering
Hierarchische Clusteranalyse
DBSCAN
Clusteralgorithmen
Modellauswahl und Modellevaluation
Abstimmung der Hyperparameter eines Schätzers
Kreuzvalidierung
Gittersuche
Evaluationsmetriken
Klassifikation
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse
Deep Learning
Einführung Deep Learning (ca. 1 Tag)
Deep Learning als eine Art von Machine Learning
Perceptron
Berechnung neuronaler Netze
Optimierung der Modellparameter, Backpropagation
Deep‐Learning‐Bibliotheken
Regression vs. Klassifikation
Lernkurven, Überanpassung und Regularisierung
Hyperparameteroptimierung
Stochastischer Gradientenabstieg (SGD)
Momentum, Adam Optimizer
Lernrate
Bildklassifizierung
Convolutional‐Schichten, Pooling‐Schichten
Reshaping‐Schichten, Flatten, Global‐Average‐Pooling
CNN‐Architekturen ImageNet‐Competition
Tiefe neuronale Netze, Vanishing Gradients, Skip‐Verbindungen, Batch‐Normalization
Anpassen von Modellen
Unüberwachtes Vortrainieren
Image‐Data‐Augmentation, Explainable AI
Objektlokalisierung
Regressionsprobleme
Verzweigte neuronale Netze
Generative Adversarial Networks (GAN)
Deepfakes
Diffusionsmodelle
Sequenzanalyse
Rekurrente Schichten
Backpropagation through time (BPTT)
Analyse von Zeitreihen
Exploding und Vanishing Gradient Probleme
LSTM (Long Short‐Term Memory)
GRU (Gated Recurrent Unit)
Deep RNN
Deep LSTM
Text‐Preprocessing
Embedding‐Schichten
Text‐Klassifizierung
Sentimentanalyse
Transfer‐Learning in NLP
Übersetzungen
Seqence‐to‐Sequence‐Verfahren, Encoder‐Decoder‐Architektur
BERT, GPT
Attention‐Schichten, Transformers
Textgeneration‐Pipelines
Summarization
Chatbots
Steuerung dynamischer Systeme
Agentensysteme
Training durch Belohnungen
Policy Gradients
Deep‐Q‐Learning
Unsicherheiten in neuronalen Netzen
Statistische Bewertung von Prognosen
Konfidenz, Standardabweichung
Unbalancierte Daten
Sampling‐Methoden
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse
Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert.
Termine
Beginn
07.04.2025
Dauer
mehr als 1 Monat bis 3 Monate
Ort
Berlin
Kosten
5.000 - 10.000 €
Beginn
07.04.2025
Dauer
mehr als 1 Monat bis 3 Monate
Ort
Saarbrücken
Kosten
5.000 - 10.000 €
Beginn
07.04.2025
Dauer
mehr als 1 Monat bis 3 Monate
Ort
Stuttgart
Kosten
5.000 - 10.000 €
Beginn
07.04.2025
Dauer
mehr als 1 Monat bis 3 Monate
Ort
Mannheim
Kosten
5.000 - 10.000 €
Beginn
07.04.2025
Dauer
mehr als 1 Monat bis 3 Monate
Ort
Hamburg
Kosten
5.000 - 10.000 €